February 5, 2020
ColletMain.jpg

When implementing an automated system for your production line, it’s essential to choose the right End of Arm Tooling (EOAT) device. Designed for robots, these grippers grasp and move objects to increase production, but you need to have the right type of robotic gripper to make your automation process successful.

The right EOAT shouldn’t compromise the integrity of your applications or employee safety—yet without the right device, your automation systems won’t benefit. These tools have a variety of ends including robotic fingers, vacuum cups, pliers, and more, and can range from electric to hydraulic.

There are several factors to take into account when choosing the right gripper for your application. Here’s how you can evaluate and pick the best one!

Choose the Right Gripper for Your Specific Process

GripperConsider the specific process you need the gripper for, as this will influence what type you choose. The speed of the process, the environment, and the level of precision are all factors to take into account. 

If your process is fast, vacuum cups are a practical consideration. However, if your application needs slower yet more accurate manipulation, robotic fingers or pliers may be better options.

Harsh environments or manufacturing facilities that have a lot of dust or debris need to ensure their robotic grippers are built to withstand such conditions while still being appropriate for your industry. For example, hydraulic grippers aren’t allowed in applications in the food industry due to the potential for oil leaks and contamination.

For applications that require high precision, mechanical grippers are ideal. If your EOAT needs to be able to reliably sort parts, especially when there are inconsistent part sizes, choosing a gripper that excels in precision is necessary.

Consider the Shape, Weight, and Size of Your Parts

Next, consider your parts when it comes to choosing the right EOAT gripper. Size, shape and surface type, and weight are all essential factors when it comes to making the best choice.

  • Size. If you’re considering robotic fingers for your gripper, the larger the part size, the more fingers you’ll need for your device. Small or irregularly shaped parts typically require grippers with high precision to streamline your automation process.
  • Shape. Certain robotic grippers are better for certain shapes. For example, parts with flat surfaces can be moved by grippers with vacuum cups or two-jaw grippers, while other shapes can be handled by multi-finger tools. Automation processes moving irregularly-shaped parts can benefit from electric grippers, which tend to be more flexible than pneumatic ones.  Parts with cylindrical surfaces need to have three-jaw grippers or an alternative such as collet grippers. If you manufacture textiles, needle grippers may be beneficial, while multi-finger grippers are best for parts that aren’t traditionally able to be moved easily in automation, such as uneven or circular objects.
  • Weight. Your gripper needs to be able to handle the weight of the part while at the same time keeping up with the speed your process requires. This is where calculations, including the part weight and gripper acceleration, will help maximize the benefits of your EOAT device and preventing damage.

Remember that when applying automation to collaborative applications in which humans and robotic tools work together, you’ll need an EOAT device that’s compliant with all International Organization for Standardization (ISO) safety standards.

Get the Perfect EOAT Device With Us at RAD

Many factors influence the success of your automation process when it comes to EOAT devices. By considering your automation needs as they relate to your procedures and parts, you can make the best decision for your arm gripper. At RAD, we offer a range of end of arm tooling devices for you to maximize productivity in your manufacturing processes—check out our EOAT grippers today!


December 30, 2019
DeburringToolAir.jpg

In the past, removing burrs—sharp edges or imperfections on parts—was done manually. Although manual deburring works, it’s a time-consuming process, and it’s impossible to recreate the consistency a robotic deburring tool does with a manual deburring process.

Robotic deburring tools provide numerous benefits over manual deburring, and these benefits support the investment and productivity for manufacturers. These automatic deburring processes offer high ROI for companies that need a capable machine to deliver on the proficiency and consistency that only robotics can offer.

What are some of the productivity benefits of these automatic deburring tools, and what applications are they used for?

Robotic Deburring Tool Benefits

Performed by a robotic arm, robotic deburring offers the following benefits for manufacturers over manual deburring:

  • Safety. Automating your deburring process with robotic tools allows you to minimize incidents that can happen during manual processes. Robotic arms increase safety, which can protect your equipment, reduce your liability, and enhance your production.

 

  • Consistency. Robotic deburring tools provide more consistent work than manual labor. Robots are able to perform the same task but with higher precision and without tiring, which results in better consistency, product quality, and value for your company.

 

  • Speed. Not only are manual deburring processes slower, but they’re also more prone to error. Robots never tire and only need routine maintenance to maintain their uptime, which results in higher output for you with reduced liability and increased profits.

 

  • Efficiency. The efficiency robotic tools provide is unmatched by manual labor. These robotic deburring tools can quickly and efficiently remove sharp edges and imperfections to enhance the safety and quality of your products.

 

Robotic tools are simple to program and are more affordable today than ever before. They’re easy enough to be implemented into your production line, creating a seamless process for your deburring needs regardless of your application.

Useful Applications for Robotic Deburring Tools

Deburring ToolThere are a variety of applications that can work with robotic deburring tools. They can be used on automated equipment, robot arms, linear actuators, cartesian robots, and CNC holders. Robotic deburring tools can also be pedestal mounted for your convenience.

Robotic deburring tools are also highly flexible, allowing you to vary the motor speed used on different components while maintaining the same consistency. These tools can adjust to variations in the parts they’re deburring without you having to alter the position of the robot, therefore simplifying your programming and eliminating the need for multiple devices.

These deburring tools can also get into narrow areas, are quiet, and are easy to install. Their adjustable force allows you to vary the speed based on the parts being deburred. Regardless of your application type, it could be time to consider switching from manual deburring to automatic with robotics!

Is It Time to Switch from Manual to Robotic?

If you’re still using manual deburring processes for your manufacturing, it could be time to consider switching to robotics. The high productivity, consistency, and safety of robotic deburring tools make them an ideal choice for a variety of different processes.

At RAD, we offer our variable-speed, radially compliant OmniForce™ deburring tool, which is able to accommodate differences in parts while using the same high-speed precision and performance. Our advanced robotic tools allow you to automate your processes for better value, safety, and efficiency!


Headquarters

319 S. First St

Tipp City, OH

45371


Read the Latest Updates from the RAD Blog

Contact


937-667-5705

937-667-7602

info@rad-ra.com


Employment Opportunities | Privacy Policy | Site Map

ISO-9001:2015
©2019 All Rights Reserved by RAD.